How to "consusmart" with your ink systems

Laura Pomés

QUIMOVIL

- Specialists in the design and manufacture of WATER-BASED flexographic printing inks, varnishes and coatings
- 60 years' experience
- Headquarters in Barcelona (Spain)
- Sales offices in Madrid and Valencia
- Presence in South America, Africa, Australia and Europe
- Flexible manufacturing system
- Own R&D Department

SERVICES: Direct technical support, Consulting, Trainings, Strategic environmental services...

(+ 34) 93 729 19 44 www.quimovil.com quimovil@quimovil.com

in www.linkedin.com/company/quimovil

EUROPEAN GREEN DEAL

- no net emissions of greenhouse gases by 2050
- economic growth decoupled from resource use
- no person and no place left behind

Source: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

https://audiovisual.ec.europa.eu/en/video/I-199819?&lg=EN/EN

CARBON FOOTPRINT

GWP: Global warming potential values relative to CO ₂		
Green House Gases	GWP – IPCC 5th Assessment Rep	
Carbon dioxide (CO ₂)	1	
Methane (CH ₄)	28	
Nitrous Oxide (N ₂ O)	265	
Hydrofluorocarbons (HFCs)	4 - 12.400	
Perfluorocarbons (PFCs)	6.630 - 11.100	
Sulfur hexafluoride (SF ₆)	23.500	
Volatile Organic Compounds (VOCs)	?	

https://www.eca.europa.eu/Lists/ECADocuments/SR14_14/QJAB14014ENC.pdf

https://www.ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf

(European Court of Auditors, 2014).

VOCs: VOLATILE ORGANIC COMPOUNDS

VOC: INDIRECT CO₂ EMISSIONS

'Volatile organic compound (VOC)' means any organic compound having an initial boiling point less than or equal to 250°C measured at a standard pressure of 101,3 kPa (DIRECTIVE 2004/42/CE).

For instance: Ethyl acetate, propyl acetate, ethyl alcohol, isopropyl alcohol, etc. *used as solvents or diluters of liquid inks*

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004L0042&from=ES

CALCULATING CO₂ INPUTS TO THE ATMOSPHERE FROM EMISSIONS OF VOCs

Non-methane volatile organic compounds (NMVOCs) are not included in global warming potential-weighted greenhouse gas emission totals, but NMVOC emissions are reported in greenhouse gas inventories because they will eventually be oxidized to CO₂ in the atmosphere (2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 7).

The basic calculation principle is:

Inputs CO_2 = Emissions NMVOC • C • 44/12

Where C is the fraction carbon in NMVOC by mass (default = 0.6)

https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/V1_7_Ch7_Precursors_Indirect.pdf

FACTOR = 2.2

FOUR SUSTAINABLE INNOVATION STRATEGIES

WATER-BASED INKS

INKS MANUFACTURED WITH 100% RENEWABLE FEEDSTOCK

INKS PARTLY BASED ON BIO RENEWABLE RAW MATERIALS

NEW OK-COMPOST INK SERIES

WATER-BASED INKS FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING

(surface and reverse print & lamination applications)

WATER-BASED INKS FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING (surface and reverse print & lamination applications)

- Very low (or no) VOC content:
 - VOCs treatment is not necessary
 - Less solvent consumption
- Less volatile substances used in production increase safety both for workers and for the finished food packaging
- Non-flammable:
 - No special handling or storage requirements
 - No explosion proof equipments are necessary
- The same quality and performance as solvent-based inks
- More stable on press
- Higher yield
- Longer photopolymer plates useful life

REDUCTION OF:

- ✓ VOCs content
- ✓ Carbon footprint
- ✓ Fossil resources

For flexible packaging: #WePrethinkINK

WATER-BASED INKS FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING

(surface and reverse print & lamination applications)

*CASE STUDY:

TOTAL VOCs EMISSIONS CALCULATION WITH ONLY THE CHANGE OF SOLVENT-BASED TO WATER-BASED WHITE INKS

1

WATER-BASED INKS FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING (surface and reverse print & lamination applications)

QUIMOVIL INKS FOR FLEXIBLE PACKAGING

REVERSE PRINT:

Lamin-Flex: Poliurethane Acrylic Hybrid

SURFACE PRINT:

Aquaplus RA Aqua-Film BBB Aqua-Film **SPECIALTIES:**

Neutro-Flex White Heptachromia OPV Varnishes Primers High coverage whites Metallic Inks Soluflex OK COMPOST Inks

WATER-BASED INKS FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING (surface and reverse print & lamination applications)

INK CARBON FOOTPRINT (Lamin-Flex series):

- ✓ CARBON FOOTPRINT OF MATERIALS
- ✓ CARBON FOOTPRINT OF MANUFACTURING PROCESS
- ✓ CARBON FOOTPRINT OF WASTE VALORIZATION (IMPACT + CREDITS)

WATER-BASED INKS 30 - 35 % LESS THAN SOLVENT-BASED INKS

PRINTING INKS FORMULATED WITH POLYMERS MANUFACTURED WITH 100% RENEWABLE FEEDSTOCK (BIOMASS BALANCE) FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING

(100% substitution of fossil with renewable raw materials)

The Biomass Balance Approach

Replacing fossil feedstock at the very beginning of the integrated production system

PRINTING INKS FORMULATED WITH POLYMERS MANUFACTURED WITH 100% RENEWABLE FEEDSTOCK (BIOMASS BALANCE) FOR PRINTING ON PAPER, CORRUGATED BOARD AND FLEXIBLE PACKAGING

(100% substitution of fossil with renewable raw materials)

***CASE STUDY: OVERPRINT VARNISH FOR PAPER**

OPV producer purchasing 100 tons/year of standard fossil based varnish and replacing this volume by new renewable based varnish

	CO₂ EMISSIONS (tons CO ₂)	CRUDE OIL CONSUMPTION (tons)
STANDARD fossil based varnish	~116	~58
NEW renewable based varnish	~6	0
SAVINGS (tons)	~110 (~95%)	~58 (100%)

REDUCTION OF:

110 tons CO₂ is similar to the savings of ~1050 solar panels** **Solar panel info: In NL, 1 solar panel delivers ~225 kWh and saves ~103 kg CO₂ per year (0,46kg CO₂/kWh)

✓ Carbon footprint

✓ Fossil resources

GRAPHICS INDUSTRY INKS Water-based inks experts

Source: BASF «In every change lies a packaged chance»

PRINTING INKS FORMULATED WITH POLYMERS PARTLY BASED ON BIO RENEWABLE RAW MATERIALS FOR PRINTING ON KRAFT PAPER AND CORRUGATED BOARD

- Water-based technology (with all its benefits)
- High content of renewable material (up to 50% on solids)
- Good press performance
- Excellent transfer and color strength
- Ink for a variety of printing and packaging applications: pre- and post-print, corrugated boards, folding cartons, labels, etc.

REDUCTION OF:

- ✓ Carbon footprint
- ✓ Fossil resources

3

SERIE QUIMO-IRIS:

WATER-BASED INKS FOR PRINTING ON COMPOSTABLE PAPER AND PLASTICS, CERTIFICATED BY TÜV AUSTRIA WITH THE OK COMPOST INDUSTRIAL AND OK COMPOST HOME CONFORMITY MARKS

- Water-based technology (with all its benefits)
- Wide portfolio of certificated products
- Suitable for printing on compostable papers and plastics
- Same performance in press than conventional inks
- Excellent printability and resistance properties
- Excellent adhesion on non-absorbing substrates
- EN 13432 Standard

Different **SPREADSHEETS** as tools for helping and advising to our customers in:

- The calculation of the maximum printing surface of each ink (% of the final product)
- The calculation of the technical viability in a real printing work (with different inks)

THANK YOU

E-MAIL:

quimovil@quimovil.com

Laura Pomés :

lpr@quimovil.com

WEBSITE:

www.quimovil.com

TELEPHONE:

0034 93 729 19 44

LINKEDIN:

www.linkedin.com/company/quimovil https://www.linkedin.com/in/laura-pomes/

